首页> 外文OA文献 >Open-Category Classification by Adversarial Sample Generation
【2h】

Open-Category Classification by Adversarial Sample Generation

机译:通过对抗样本生成进行开放式分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In real-world classification tasks, it is difficult to collect trainingsamples from all possible categories of the environment. Therefore, when aninstance of an unseen class appears in the prediction stage, a robustclassifier should be able to tell that it is from an unseen class, instead ofclassifying it to be any known category. In this paper, adopting the idea ofadversarial learning, we propose the ASG framework for open-categoryclassification. ASG generates positive and negative samples of seen categoriesin the unsupervised manner via an adversarial learning strategy. With thegenerated samples, ASG then learns to tell seen from unseen in the supervisedmanner. Experiments performed on several datasets show the effectiveness ofASG.
机译:在实际的分类任务中,很难从环境的所有可能类别中收集训练样本。因此,当在预测阶段出现看不见类别的实例时,健壮分类器应该能够分辨出它是来自看不见类别的,而不是将其分类为任何已知类别。本文采用对抗性学习的思想,提出了开放类别分类的ASG框架。 ASG通过对抗性学习策略以无人监督的方式生成可见类别的正面和负面样本。然后,借助生成的样本,ASG学会在监督下从看不见的角度分辨出所见。在几个数据集上进行的实验证明了ASG的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号